16 research outputs found

    Probabilistic identification of sit-to-stand and stand-to-sit with a wearable sensor

    Get PDF
    Identification of human movements is crucial for the design of intelligent devices capable to provide assistance. In this work, a Bayesian formulation, together with a sequential analysis method, is presented for identification of sit-to-stand (SiSt) and stand-to-sit (StSi) activities. This method performs autonomous iterative accumulation of sensor measurements and decision-making processes, while dealing with noise and uncertainty present in sensors. First, the Bayesian formulation is able to identify sit, transition and stand activity states. Second, the transition state, divided into transition phases, is used to identify the state of the human body during SiSt and StSi. These processes employ acceleration signals from an inertial measurement unit attached to the thigh of participants. Validation of our method with experiments in offline, real-time and a simulated environment, shows its capability to identify the human body during SiSt and StSi with an accuracy of 100% and mean response time of 50 ms (5 sensor measurements). In the simulated environment, our approach shows its potential to interact with low-level methods required for robot control. Overall, this work offers a robust framework for intelligent and autonomous systems, capable to recognise the human intent to rise from and sit on a chair, which is essential to provide accurate and fast assistance

    Human-activity-centered measurement system:challenges from laboratory to the real environment in assistive gait wearable robotics

    Get PDF
    Assistive gait wearable robots (AGWR) have shown a great advancement in developing intelligent devices to assist human in their activities of daily living (ADLs). The rapid technological advancement in sensory technology, actuators, materials and computational intelligence has sped up this development process towards more practical and smart AGWR. However, most assistive gait wearable robots are still confined to be controlled, assessed indoor and within laboratory environments, limiting any potential to provide a real assistance and rehabilitation required to humans in the real environments. The gait assessment parameters play an important role not only in evaluating the patient progress and assistive device performance but also in controlling smart self-adaptable AGWR in real-time. The self-adaptable wearable robots must interactively conform to the changing environments and between users to provide optimal functionality and comfort. This paper discusses the performance parameters, such as comfortability, safety, adaptability, and energy consumption, which are required for the development of an intelligent AGWR for outdoor environments. The challenges to measuring the parameters using current systems for data collection and analysis using vision capture and wearable sensors are presented and discussed

    The assessment of viscoelastic models for nonlinear soft materials

    Get PDF
    The increasing use of soft materials in robotics applications requires the development of mathematical models to describe their viscoelastic and nonlinear properties. The traditional linear viscoelastic models are unable to describe nonlinear strain-dependent behaviors. This limitation has been addressed by implementing a piecewise linearization (PL) in the simplest viscoelastic model, the Standard Linear Solid (SLS). In this work, we aim to implement the PL in a more complex model, the Wiechert model and compare the stress response of both linearized models. Therefore, the experimental data from the stress relaxation and tensile strength tests of six rubber-based materials is used to approximate the spring and dashpot constants of the SLS and the Wiechert model. Prior to implement the PL into the stress-strain curve of each material, the stress response from the Maxwell branches must be subtracted from this curve. By using the parameters obtained from fitting the Wiechert model into the stress relaxation curve, the response of both linearized models was improved. Due to the selection of constitutive equations evaluated, the linearized SLS model described the stress-strain curve more accurately. Finally, this work describes in details every step of the fitting process and highlights the benefits of using linearization methods to improve known models as an alternative of using highly complex models to describe the mechanical properties of soft materials

    The effect of multi-layer bandage on the interface pressure applied by compression bandages

    Get PDF
    Medical compression bandages are widely used in the treatment of chronic venous disorder. In order to design effective compression bandages, researchers have attempted to describe the interface pressure applied by multi-layer bandages using mathematical models. This paper reports on the work carried out to compare and validate the mathematical models used to describe the interface pressure applied by multi-layer bandages. Both analytical and experimental results showed that using simple multiplication of a number of bandage layers with the pressure applied by one layer of bandage or ignoring the increase in the limb radius due to former layers of bandage will result in overestimating the pressure. Experimental results showed that the mathematical models, which take into consideration the increase in the limb radius due to former bandage layers, are more accurate than the one which does not

    Rate-dependent gait dynamic stability analysis for motor control estimation

    Get PDF
    This work presents the gait dynamic stability study for different walking speeds adopted by user intentions. Experimental data were collected from four healthy subjects while walking on a force platform at slow, normal and fast speed. The rate-dependent variations in the center of pressure (COP) and ground reaction forces (GRF) were modelled as motor output and input responses. Finite difference and non-linear regression algorithms were implemented to model gait transitions. Dynamic stability estimation for level ground walking was performed by analysis in time and frequency domains. Study of the COP velocity in loading phase showed that, the overdamped motor output response acts as a compensator for instabilities and oscillations in unloading phase and initial contact. Normal walking was predicted, from gait analysis in frequency domain, as the most stable gait for healthy subjects

    Gait dynamic stability analysis and motor control prediction for varying terrain conditions

    Get PDF
    This work presents the gait dynamic stability modelling for different walking terrains adopted by the motor. The sensory-motor transitional gait assessment is difficult in clinical environment in case of disorders. The aim of present study was to model and analyse dynamic stability thresholds for gait transitional phases. Experimental data were collected from four healthy subjects while walking on a force platform placed at ramp and level ground walking tracks. The rate-dependent variations in the center of pressure (COP) and ground reaction forces (GRF) were modelled as motor output and input responses. Finite difference and non-linear regression algorithms were implemented to model gait transitions. Dynamic stability estimation for ramp and level ground walking were performed by analysis in time and frequency domains. Our investigation provided interesting results; 1) the overdamped motor output response acts as a compensator for instabilities and oscillations in unloading phase and initial contact, and 2) prediction of ramp ascend walking as the least stable gait than ramp descend for healthy subjects

    Human-in-the-loop layered architecture for control of a wearable ankle–foot robot

    Get PDF
    Intelligent wearable robotics is a promising approach for the development of devices that can interact with people and assist them in daily activities. This work presents a novel human-in-the-loop layered architecture to control a wearable robot while interacting with the human body. The proposed control architecture is composed of high-, mid- and low-level computational and control layers, together with wearable sensors, for the control of a wearable ankle–foot robot. The high-level layer uses Bayesian formulation and a competing accumulator model to estimate the human posture during the gait cycle. The mid-level layer implements a Finite State Machine (FSM) to prepare the control parameters for the wearable robot based on the decisions from the high-level layer. The low-level layer is responsible for the precise control of the wearable robot over time using a cascade proportional–integral–derivative (PID) control approach. The human-in-the-loop layered architecture is systematically validated with the control of a 3D printed wearable ankle–foot robot to assist the human foot while walking. The assistance is applied lifting up the human foot when the toe-off event is detected in the walking cycle, and the assistance is removed allowing the human foot to move down and contact the ground when the heel-contact event is detected. Overall, the experiments in offline and real-time modes, undertaken for the validation process, show the potential of the human-in-the-loop layered architecture to develop intelligent wearable robots capable of making decisions and responding fast and accurately based on the interaction with the human body

    Virtual prototyping of a semi-active transfemoral prosthetic leg

    Get PDF
    This article presents a virtual prototyping study of a semi-active lower limb prosthesis to improve the functionality of an amputee during prosthesis–environment interaction for level ground walking. Articulated ankle–foot prosthesis and a single-axis semi-active prosthetic knee with active and passive operating modes were considered. Data for level ground walking were collected using a photogrammetric method in order to develop a base-line simulation model and with the hip kinematics input to verify the proposed design. The simulated results show that the semi-active lower limb prosthesis is able to move efficiently in passive mode, and the activation time of the knee actuator can be reduced by approximately 50%. Therefore, this semi-active system has the potential to reduce the energy consumption of the actuators required during level ground walking and requires less compensation from the amputee due to lower deviation of the vertical excursion of body centre of mass

    Adaptive Undulatory Locomotion of a C. elegans Inspired Robot

    No full text
    corecore